13
Likelihoods for the rate ratio

In previous chapters we have introduced the main ideas of probability mod-
els in epidemiology and discussed the use of likelihood to provide an es-
timate, confidence interval or p-value for the parameter of a probability
model. Although we have used the joint log likelihood for several parame-
ters our discussion of confidence intervals and p-values has been based on
probability models with only a single parameter. We now consider proba-
bility models with two or more parameters.

13.1 Comparing rates using the rate ratio

A simple and important problem which involves two parameters is the com-
parison of two rates, for example for a cohort which was exposed to some
environmental factor and an unexposed cohort. The probability model
which underlies such a comparison has parameters corresponding to the
rates of failure in the two cohorts. We shall use a subscript notation to
denote exposure groups and write A; for the rate parameter conditional on
exposure, and Ag for the rate parameter conditional on non-exposure.
Table 13.1 shows a preliminary tabulation of some data which will be
analysed in detail in this and the following chapter.* The data relate
subsequent incidence of ischaemic heart disease (IHD) to dietary energy
intake. The study cohort consisted of 337 men whose energy intake was
assessed by a seven-day weighed dietary survey. The subsequent follow-up
was for an average of 13.7 years and yielded 45 new cases of IHD. The table
divides this cohort into an exposed group consisting of men whose energy
intake was less than 2750 kcals per day, the remaining men being regarded
as unexposed. Although it might seem odd to denote the low energy intake
group as exposed, this is because low energy intake is a surrogate measure

for physical inactivity. Table 13.1 also introduces some algebraic notation:

Dy, D; for the number of disease events observed in the unexposed and
exposed cohorts respectively, and Yy, Y7 for the corresponding person-years
observation.

*Unpublished data. The study is described by Morris, J.N. et al. (1977) British
Medical Journal, 19 November 1977, 2, 1307-1314.
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Table 13.1. Incidence of ischaemic heart disease by energy intake

Energy intake
< 2750 keals > 2750 keals
(exposed) (unexposed)
Person years 1857.5 (Y1) 2768.9 (Yo)

5 exle e -
New cases 28 (D4) 17 (Do) w5

Estimated rate " 15.1 6.1
90% interval (11.1 —» 20.6) . (41— 9.1)

The data from the unexposed group leads to
Dy log(Ag) — AoYo = 17log(Ag) — 2768.9A¢

as the log likelihood for Ag. The most likely value of Ag is the observed
incidence rate, 17/2768.9 = 6.1 per 1000 person-years. The fact that this
estimate is based on only 17 observed cases is reflected in the rather wide
90% confidence interval for )\ stretching from 4.1 to 9.1 per 1000 person-
years. Similarly, the data from the exposed group leads to

Dl ].Og(/\l) — /\1Y1 =28 log(/\l) — 18575/\1

as tife log likelihood for A;. The most likely value of Ay is 28/1857.5 = 15.1
per 1000 person-years, and the 90% confidence interval stretches from 11.1
to 20.6 per 1000 person-years. The two groups provide independent sets
of data, so that the two log likelihoods are added to yield the joint log
likelihood

17log(Ao) — 2768.9X¢ + 28log(A\1) — 1857.51.

This is the likelihood for any specified pair of values for the two parameters
Ao and A;. Its maximum value is achieved when these parameters take
values equal to the corresponding observed rates — 6.1 and 15.1 per 1000
person-years respectively. _

The 90% confidence intervals for the two rates do not overlap and it
might seem that the data support the proposition that the two rates are
different. In general, however, the degree of overlap of confidence intervals
is a poor criterion for comparing rates. If the interval in the high intake
group had stretched from, say, 3.0 to 12.0 then it could be argued that, since
values of the rate parameter in the range from 11.1 to 12.0 are included
in both intervals, the data do not support the idea that the rates are
different. The flaw in this argument is that this range is at the extreme
of both ranges; the support for the proposition that the rates are similar
requires two rather poorly supported propositions to hold simultaneously.
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The way to approach such problems is to reparametrize the model in
such a way that one of the new parameters makes a comparison. The usual
comparison parameter for two rates is the rate ratio, which we shall denote
by the Greek letter §. Since 6 = A; /), the rate in the exposed cohort may
be written as 8¢ instead of A; and our model can be written in terms of,
the parameters (6, Ao) instead of (A1, Ao).

The log likelihood for Ag and X; in terms of Dy, Dy, Yy, Y1 is

Dy log(/\o) — XoYo + Dy log(/\l) — MY

To express the log likelihood in terms of the new parameter system, we
substitute ) for A;, to get

Dy log(Ao) — Ao¥o + Dy log(6X) — BAeY1,
which reduces to
Dlog(ho) + Dy log(8) — MY — 0XoY4,

where D = Dy + D, is the total number of observed disease events. For
the example in Table 13.1, the log likelihood is

451og(Ao) + 281og(6) — 2768.920 — 1857.50)

The purpose of this choice of new parameters for the model is to concen-
trate the comparison of the rates into the parameter 6, but unfortunately,
the log likelihood for these new parameters cannot be divided into a sum
of separate parts, one for each parameter. The appearance of the term
1857.50) means that the shape of the log likelihood with respect to 6 de-
pends on the value of )\g, and this is unknown. When assessing the support
for different values of 6, not knowing A is somewhat of a problem and in
this context Ag is called a nuisance parameter.

There are two ways of dealing with a nuisance parameter when con-
structing a likelihood for the parameter of interest. These will be described
in the next two sections. »

13.2 Profile likelihood

The obvious way to deal with a nuisance parameter is to estimate its value.

For each value of the rate ratio 6, the value of A\p which maximizes the like-
lihood can be determined and substituted into the joint log likelihood. The
resulting maximized log likelihood can then used as a measure of support
for this value of 6.

This idea is illustrated in Fig. 13.1. The top graph shows the log like-
lihood ratio for log(Ag) and log(f) as a contour map. The contour lines,
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corresponding to parameter values which have equal log likelihood, are ap-
proximately elliptical (this has been aided by the choice of log scales for
both parameters, so that they are not bounded). The contours shown cor-
respond to log likelihood ratios of —1, —2, —3, —4, and —5 relative to the
maximum value.

The vertical arrows denote specified values of log(6) for which we require
to measure the support. For each fixed value of log(f), we find the value
of log(X¢) which maximizes the log likelihood and plot this maximized log
likelihood on the lower graph. This is then used to measure the relative
support lent by the data to different values of log(6). By analogy with
physical maps, this curve is called a profile log likelihood. A profile log
likelihood is not a true log likelihood since it cannot be directly obtained by
taking the log of the probability of the data. However, in most situations
it behaves in exactly the same way as a log likelihood. It can be seen
from Fig. 13.1 that the value of § which gives the largest value of the
profile log likelihood is also the value corresponding to the maximum of
the total log likelihood. The curvature of the profile log likelihood at this
maximum point can be used to calculate approximate confidence intervals
and Wald tests, and score tests for null values of 6 can be carried out using
the gradient and curvature of the profile log likelihood at the null value.
Similarly, a log likelihood ratio test can be carried out by calculating minus
twice the profile log likelihood ratio at the null value of 6.

In the case of the the rate ratio, this process is simplified since the
degivation of the profile log likelihood can be carried out algebraically,
leading to a mathematical equation for the curve. The value of Ao which
maximizes the log likelihood for any given value of # may be shown to be

_b
Yo + 6Y3

and substituting this for Ag in the log likelihood expression gives the profile
log likelihood:

D1 log(8) — Dlog(Yp + 6Y1) + Dlog(D) — D.
Since the last two terms do not depend upon 0, they are irrelevant and

may be omitted. We are also at liberty to add terms which do not involve
0, and addition of

D, log(Y1) + Do log(Yo)

yields, after some rearrangement, the expression:

Y
Djlog (%) — Dlog (1 + %) .



126 LIKELITHOODS FOR THE RATE RATIO

-5.0

log (A,)

-5.5

-6.5

B

Log likelihood ratio
2
1

-4
1

-5
|
N

-

0.0 0.5 1.0 1.5 2.0
log (8)

Fig. 13.1. Log likelihood surface for § and X\ (above) and profile log
likelihood for 8 (below).
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This is exactly the same as a Bernoulli likelihood for the odds parameter

_om

Q=1
Yo

based on a split of D cases as Dy exposed and Dy = D — D unexposed. It
follows that estimation of @ using the profile log likelihood is equivalent to
estimating the odds, €, in the binary model; the two estimates differ only
by the known multiplier, Y7 /Y5.

From the Bérnoulli likelihood, the most likely value of Q is D1/Dg and
the standard deviation of log(f?) is

1. T
Dy  D;
It follows that the most likely value of 8 is

D1/Dy _ Dy/1h
Yi/Yo  Do/Ys

which is the ratio of the most likely values of the two rates and since
log(@) differs from log(f2) only by a known constant, the shape of the log
likelihoods are identical, and the standard deviation of log(f) is also

1 i 1
Dy  D:’
Exercise 13.1. Calculate the maximum likelihood estimate of the rate ratio for
the data of Table 13.1 and give 90% confidence limits.

"For the calculation of p-values, the null hypothesis generally of interest
is that the two rates are equal, so that §; = 1 and g = Y1/Y5. In terms
of the corresponding risk parameter the null hypothesis is that

Qo Y

T 110, Yottt

The score is
U= D1 - Dﬂ'@,

which can be written as
U=D,~—-EFE;

where E, = Dmp, is the expected number of exposed cases under the null
hypothesis. The score variance is

¥

V= Dﬂ'@(l - 7'('@).

P

f
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Exercise 13.2. Test the significance of the effect of low energy intake in the
data of Table 13.1. -

13.3 Conditional likelihood

The approach outlined above starts from the question: what is the probas-:

bility that, during follow-up, Dy events occur in the unexposed cohort and
D; in the exposed cohort? The resulting likelihood involves not only the
rate ratio 6 (the parameter of interest), but also a nuisance parameter, A.
Replacing the unknown nuisance parameter by its most likely value leads
to the profile log likelihood for 8. This argument is appéaling in that it
closely follows the way in which cohort studies are designed and executed
— we decide in advance upon the cohort to be followed and the duration of
follow-up and wait to see how many disease events occur in different sub-
groups. However, it is not essential that the likelihood argument should
correspond so closely with the study design. In partigular, if some aspect of
the result contains little or no information about the parameter of interest,
then we are free to treat it as if it were fixed by the study design. The aim
of such an argument, which is called a conditional argument, is to obtain
a new probability model for the data which does not involve the nuisance
parameter.

In this case the total number of cases tells us nothing about the effect
of exposure, which depends on the split among cases between exposed and
not exposed. We therefore take the total number of events as fixed, corre-
sponding to a study in which the follow-up continues for just long enough
for D events to be observed. The analysis of the study then concentrates
on the split of cases between the exposed and unexposed sections of the
cohort, and starts from the question: given that D failures occurred, what
is the probability that Dy of them occurred in the unexposed group and
D in the exposed group?

The split of the D failures between exposed and unexposed groups may
be described using the binary probability model. This is illustrated in
Fig. 13.2. The left-hand tree shows the observed split of the failures and
the right-hand tree shows the expected split of cases. If Y7 and Yj can be
regarded as fixed, the odds that a case was exposed is

_Ah v

T Yo Yo

and the log likelihood for @ is

oY1 oY,
D log (To> — Dlog (1 + Tg) .
Thus regarding the number of cases as fixed leads directly to a conditional
log likelihood which depends only upon 8. The log likelihood is conditional
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Fig. 13.2. The conditional argument.

in the sense that it takes as fixed an aspect of the data (the total number of
events, D) that was, in reality, an unpredictable outcome of the study. In
this case the profile and conditional likelihood approaches have led to the
same log likelihood and, therefore, to identical estimates and confidence
intervals, but in general this will not be the case.

The conditional approach always yields a true log likelihood, being
based upon a probability (albeit a conditional probability) of observed data.
Also, because this probability depends only on the parameter of interest, it
can be used to calculate exact p-values and confidence intervals. In our cur-
rent example, the probabilities for different splits of cases between exposed
and unexposed groups, given 6, can be obtained from the binomial distri-
bution. However, the conditional approach is not an automatic method,
but relies on our ingenuity in recognizing a suitable conditional argument.
Such arguments are not always possible. For example, it has not proved
possible to find an argument which leads to a conditional likelihood for the
rate difference, A1 — Ag.

In contrast, the profile method has the considerable virtue that it can
always be employed. Even if it is impossible to use an algebraic method to
obtain an explicit formula for the profile log likelihood curve, the deriva-
tion of the curve numerically by the procedure illustrated in Fig. 13.1 can
always be carried out by computer. The difficulty with this approach is
that the profile curve is not necessarily a true log likelihood. However,
in most situations it does approximately possess the properties of a true
log likelihood. These properties can safely be assumed when the number
of nuisance parameters is small in comparison with the total quantity of
data.

We should note that our current use the conditional approach requires
MYy and A1Y;, the expected numbers of cases in the two groups, to be
constants not influenced by the study outcome. Although this is approx-
imately true for the rare events usually studied by epidemiologists (see
section 6.3), it may not be an acceptable argument when the probabilities

of failure are high. In these cases, the likelihood derived in this chapter
oA

C
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can only be regarded as a profile likelihood and exact tests and confidence
intervals are not available.

13.4 Approximating profile log likelihoods

For the rate ratio it is possible to derive a mathematical expression for:

the profile log likelihood and hence find a Gaussian approximation from
which approximate p-values and confidence intervals can be calculated in
the usual way. This is not possible in general. The profile likelihood can
always be computed by going through the steps indicated in Fig. 13.1, but
the resulting curve usually cannot be represented by a simple algebraic
expression. Fortunately some simple rules, derived from calculus, allow us
to calculate Gaussian approximations to such profile log likelihoods, and
hence algebraic expressions for M, S, U, and V, which we can go on to
use in the usual way. These rules and their derivation are explained in
Appendix &. Here we briefly summarize the most important rules.

An important general problem is the estimation of the difference be-
tween two parameters §; and (5; when these are estimated from two in-
dependent bodies of data. If the log likelihood for By has a Gaussian
approximation defined by the most likely value My and standard deviation
S and the approximation to the log likelihood for $; is defined by M; and
51, then the Gaussian approximation of the log likelihood for §; — By has

M = Ml _M07

S = /(51)?+(5)2%

The rate ratio is a special case of this more general problem since its loga-
rithm may be written :

log (i—j}) — log(A1) — log(Ao)

and in Appendix C it is shown that these rules lead to the same Gaussian

log likelihood approximation as we obtained earlier. Here -we use them to

approximate the profile log likelihood for the rate difference. The most

likely value is the difference between the most likely values of the rates,
Dy Dy

M=t
i Y’

and, from Chapter 9, S1 = +/D1/Y1 and Sy = /Dy/Ys so the value of S

for the rate difference is
M)? - (Yo)?
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Exercise 13.3. Calculate an approximate 90% confidence interval for the dif-
ference between the rates using the data of Table 13.1.

A still more general problem concerns a weighted sum of parameters,
of the form

Wi+ Wafa + W3z + - )

each 3 parameter again being estimated from independent bodies of data.
The Gaussian approximation to the profile log likelihood for the weighted
sum has :

M = WiM+WoMs +WsMz+---

S = \/(W151)2 + (WzSz)z + (W3S3)2 +--- s
where Mj,S1,... etc. are the most likely values and standard deviations
for B1,... etc.. An example is the profile log likelihood for the cumulative

failure rate. In Chapter 5 we defined the cumulative rate by
AT 4 A%T2 1.

where A1, )2, ... are probability rates operating for time periods 71,772, .. ..
The cumulative rate is, therefore, a weighted sum of the form discussed in
this section. :

Exercise 13.4. Using the Gaussian approximation given in Chapter 9 for the
log likelihoods for rate parameters, derive an expression for the Gaussian approx-
imation to the profile log likelihood for the cumulative rate.

Solutions to the exercises
13.1 The most likely value of 8 is

Di/Y: _ 28/18575

= = 2.48.
Do/Yo _ 17/2768.9

The standard deviation of the estimate of log(6), is
S = +/1/28 + 1/17 = 0.3075,
so that the 90% error factor for 6 is
exp(1.645 x 0.3075) = 1.66.

The 90% confidence limits for the rate ratio are 2.48/1.66 = 1.49 (lower
limit) and 2.48 x 1.66 = 4.12 (upper limit). _
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13.2 The observed number of events in the low energy intake group is 28.
There were 45 events in total and, under the null hypothesis, the probability
of having been exposed is mp = 1857.5/4626.4 = 0.402. The score is

U =28 — 45 x 0.402 = 9.93,
and the score variance is
V =45 x 0.402 x (1 —0.402) = 10.81.
The score test is (U7)?/V = 9.12, giving p ~ 0.003.

13.3

28 17

= 18575~ 77689 — 0.00893 (8.93 per 1000 person-years).

= 28 17
o |/ (1857.5)2 " (2768.9)2

The 90% confidence interval is

= (.00321 (3.21 per 1000 person-years).

M £ 1.6455 = 3.65 to 14.2 per 1000 person-years.

13.4 The log likelihood for A! is approximated by a Gaussian curve with

Vi

Dl
— T

_—Y—l-’ Slz

Ml
Similarly for A%, A3, ... etc. The weights are the durations of observation,
T',T2, ..., so that the profile log likelihood for the cumulative rate has its
‘maximum at Dl D2
— 1 2
M= ?—IT + ?ET + e
and the standard deviation of the Gaussian approximation is /

T \° T2\?
SZ\/DI (Y_11> +D2? (W) 4
Note that, as we narrow the time bands to clicks, the ratio T//Y approaches
1/N, where N is the number of subjects under observation during the click.

In these circumstances, M is the Aalen—Nelson estimate of the cumulative
rate and S may be used to calculate an approximate confidence interval.
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